NumPy参考 >例行程序 >Statistics > numpy.percentile
numpy.
percentile
(a,q,axis = None,out = None,overwrite_input = False,插值='linear',keepdims = False )[源代码] ¶计算沿指定轴的数据的第q个百分位数。
返回数组元素的第q个百分点。
输入数组或可以转换为数组的对象。
要计算的百分位数或百分位数序列,必须在0到100之间(含0和100)。
计算百分位数的一个或多个轴。默认值是沿数组的展平版本计算百分位数。
在1.9.0版中更改:支持轴元组
放置结果的替代输出数组。它的形状和缓冲区长度必须与预期的输出相同,但是(必要时)将强制转换(输出的)类型。
如果为True,则允许通过中间计算来修改输入数组a,以节省内存。在这种情况下,此功能完成后输入a的内容 是不确定的。
此可选参数指定当所需的百分位数位于两个数据点之间时要使用的插值方法
:i < j
“线性”: ,其中
是索引的小数部分包围
和。i + (j - i) * fraction
fraction
i
j
“降低”:i
。
“更高”:j
。
'nearest':i
或j
,以最近的一个为准。
'中点':。(i + j) / 2
1.9.0版中的新功能。
如果将其设置为True,则缩小的轴将保留为尺寸1的尺寸。使用此选项,结果将针对原始数组a正确广播。
1.9.0版中的新功能。
如果q是单个百分位数,而axis = None,则结果是标量。如果给出了多个百分位数,则结果的第一个轴对应于百分位数。其他轴是a减小后剩余的轴。如果输入包含小于的整数或浮点数float64
,则输出数据类型为float64
。否则,输出数据类型与输入的数据类型相同。如果指定了out,则返回该数组。
笔记
给定V
长度向量N
,第q个百分位数
V
是的q/100
排序副本中从最小到最大的方式的值V
。如果归一化排名与精确位置不完全匹配,则两个最近邻的值和距离以及内插参数将确定百分位数q
。此函数与if中位数相同,if q=50
等于最小值,if q=0
等于最大值q=100
。
例子
>>> a = np.array([[10, 7, 4], [3, 2, 1]])
>>> a
array([[10, 7, 4],
[ 3, 2, 1]])
>>> np.percentile(a, 50)
3.5
>>> np.percentile(a, 50, axis=0)
array([6.5, 4.5, 2.5])
>>> np.percentile(a, 50, axis=1)
array([7., 2.])
>>> np.percentile(a, 50, axis=1, keepdims=True)
array([[7.],
[2.]])
>>> m = np.percentile(a, 50, axis=0)
>>> out = np.zeros_like(m)
>>> np.percentile(a, 50, axis=0, out=out)
array([6.5, 4.5, 2.5])
>>> m
array([6.5, 4.5, 2.5])
>>> b = a.copy()
>>> np.percentile(b, 50, axis=1, overwrite_input=True)
array([7., 2.])
>>> assert not np.all(a == b)
不同类型的插值可以通过图形显示:
import matplotlib.pyplot as plt
a = np.arange(4)
p = np.linspace(0, 100, 6001)
ax = plt.gca()
lines = [
('linear', None),
('higher', '--'),
('lower', '--'),
('nearest', '-.'),
('midpoint', '-.'),
]
for interpolation, style in lines:
ax.plot(
p, np.percentile(a, p, interpolation=interpolation),
label=interpolation, linestyle=style)
ax.set(
title='Interpolation methods for list: ' + str(a),
xlabel='Percentile',
ylabel='List item returned',
yticks=a)
ax.legend()
plt.show()