1.6.0 版本中的新增功能。

隐士系列,“物理学家”( numpy.polynomial.hermite) #

该模块提供了许多可用于处理 Hermite 系列的对象(主要是函数),其中包括一个Hermite封装了常用算术运算的类。 (有关该模块如何表示和使用此类多项式的一般信息位于其“父”子包的文档字符串中numpy.polynomial)。

课程#

Hermite(coef[,域,窗口,符号])

隐士系列课程。

常数#

hermdomain

数组对象表示固定大小项的多维同构数组。

hermzero

数组对象表示固定大小项的多维同构数组。

hermone

数组对象表示固定大小项的多维同构数组。

hermx

数组对象表示固定大小项的多维同构数组。

算术#

hermadd(c1,c2)

将一个 Hermite 系列添加到另一个系列中。

hermsub(c1,c2)

从一个 Hermite 级数中减go另一个级数。

hermmulx(C)

将 Hermite 级数乘以 x。

hermmul(c1,c2)

将一个 Hermite 级数乘以另一个。

hermdiv(c1,c2)

将一个 Hermite 系列除以另一个系列。

hermpow(c,pow[,最大功率])

将 Hermite 系列提升到一个水平。

hermval(x, c[, 张量])

评估 Hermite 级数在点 x 处的值。

hermval2d(x、y、c)

评估点 (x, y) 处的二维 Hermite 级数。

hermval3d(x、y、z、c)

评估点 (x, y, z) 处的 3-D Hermite 级数。

hermgrid2d(x、y、c)

评估 x 和 y 的笛卡尔积的二维 Hermite 级数。

hermgrid3d(x、y、z、c)

评估 x、y 和 z 的笛卡尔积的 3-D Hermite 级数。

微积分#

hermder(c[, m, scl, 轴])

区分 Hermite 系列。

hermint(c[, m, k, lbnd, scl, 轴])

整合一个Hermite系列。

其他功能#

hermfromroots(根)

生成具有给定根的 Hermite 级数。

hermroots(C)

计算 Hermite 级数的根。

hermvander(x,度)

给定次数的伪范德蒙矩阵。

hermvander2d(x、y、度)

给定度数的伪范德蒙矩阵。

hermvander3d(x、y、z、度)

给定度数的伪范德蒙矩阵。

hermgauss(度)

高斯-埃尔米特求积。

hermweight(X)

Hermite 多项式的权重函数。

hermcompanion(C)

返回 c 的缩放伴随矩阵。

hermfit(x, y, deg[, rcond, full, w])

Hermite 级数与数据的最小二乘拟合。

hermtrim(c[, 托尔])

从多项式中删除“小”“尾随”系数。

hermline(关闭,SCL)

Hermite级数的图形是一条直线。

herm2poly(C)

将 Hermite 级数转换为多项式。

poly2herm(波尔)

将多项式转换为 Hermite 级数。

也可以看看

numpy.polynomial