numpy.add #
- 麻木的。add ( x1 , x2 , / , out=None , * , where=True , casting='same_kind' , order='K' , dtype=None , subok=True [ , signature , extobj ] ) = <ufunc 'add' > #
按元素添加参数。
- 参数:
- x1, x2类似数组
要添加的数组。如果,它们必须可广播为通用形状(成为输出的形状)。
x1.shape != x2.shape
- out ndarray、None 或 ndarray 和 None 的元组,可选
存储结果的位置。如果提供,它必须具有输入广播到的形状。如果未提供或无,则返回新分配的数组。元组(只能作为关键字参数)的长度必须等于输出的数量。
- 其中array_like,可选
该条件通过输入广播。在条件为 True 的位置,输出数组将设置为 ufunc 结果。在其他地方,输出数组将保留其原始值。请注意,如果通过 default 创建 未初始化的out
out=None
数组,则其中条件为 False 的位置将保持未初始化状态。- **夸格
对于其他仅关键字参数,请参阅 ufunc 文档。
- 返回:
- 添加ndarray 或标量
x1和x2的总和(按元素)。如果x1和x2都是标量,则这是一个标量。
笔记
就数组广播而言相当于x1 + x2 。
例子
>>> np.add(1.0, 4.0) 5.0 >>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> np.add(x1, x2) array([[ 0., 2., 4.], [ 3., 5., 7.], [ 6., 8., 10.]])
该
+
运算符可以用作np.add
on ndarray 的简写。>>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> x1 + x2 array([[ 0., 2., 4.], [ 3., 5., 7.], [ 6., 8., 10.]])